
Secure and Decentralized Live Streaming using
Blockchain and IPFS

Shachindra
Blockchain Architect
REVOtic Engineering

New Delhi, India
shachindra@revoticengineering.com

Anish Mishra
Infrastructure & Security Architect

REVOtic Engineering
New Delhi, India

anish@revoticengineering.com

Sagar Ganiga
Application Developer
REVOtic Engineering

New Delhi, India
sagar@revoticengineering.com

Meit Maheshwari
Blockchain Developer
REVOtic Engineering

New Delhi, India
meit@revoticengineering.com

Shreya Saha
Application Developer
REVOtic Engineering

New Delhi, India
shreya@revoticengineering.com

Gaurav Kumar
Full Stack Developer
REVOtic Engineering

New Delhi, India
gk@revoticengineering.com

Abstract — Decentralized cloud systems are proving to be
much more advantageous than centralized cloud systems. They
distribute power away from a central authority, cut down
operation cost, have greater fault tolerance, fewer trust
requirements between storage providers and data owners and
is less prone to attacks. InterPlanetary File System, a protocol
to create a content-addressable, peer-to-peer method of storing
and sharing hypermedia in a distributed file system can
revolutionize how we share the media content over the internet.
We provide an overview of the current systems to stream
media over the internet and describe various problems that
these systems face with regards to media delivery, governance,
and distribution. We exhibit, how with the help of IPFS,
Blockchain based Smart Contracts and HTTP Live Streaming
(HLS), it is possible to minimize, avoid and diminish the
problems associated with the traditional media delivery system
and how we can improve the overall efficiency of media
delivery systems. We explain how the conventional framework
of media delivery can be transformed by IPFS based delivery
network supported by HLS streaming for all kinds of
distribution model (live or on-demand). We also propose a
novel method to decentralize the cloud storage system using a
separate server and client-side applications.

Keywords—IPFS, Internet media delivery networks, HLS,
Streaming with IPFS, Distributed Ledger Technologies

I. INTRODUCTION

Video streaming over the Internet is one of the most
popular activities worldwide. Streaming media accounts for
over two-thirds of all internet traffic and it is estimated to
jump 82 percent by 2020. To handle this ever increasing
traffic of media, the internet has matured over the last 3
decades and the current scenario demand one more
revolutionary change in the backbone of the internet.
Today’s media delivery networks are experiencing problems
related to limited bandwidth, quality of streaming, security
and censorship concerns. In this paper, we explain how
these issues can be addressed with the help of emerging
technologies like IPFS supported by HLS.

II. EVOLUTION OF STREAMING MEDIA TECHNOLOGIES

The vision of streaming media occurred at a point when
primary multimedia technologies were prominent among

desktop users. They ran unique software created to
decompress and render these files on the screen. The initial
and key annex of this prototype was the conviction of
downloadable media on the Internet. Nevertheless, this was
not an adequate action for consumers with scant amounts of
storage, slow internet connection, and limited tolerance.
This emphasized the creation of streaming media, a
technology that facilitates the user to experience a media
content on-the-fly over the internet.

This technological evolution includes the following
standards

● HTTP-Based Streaming
● First Servers and Protocols for Streaming Media
● First Video Codecs for Streaming Media
● RealSystem G2
● Distributed Media Delivery Networks

III. CURRENT SCENARIO OF STREAMING OVER INTERNET

In the last few years, video-supported applications, and
especially video streaming applications, have become quite
popular. Many providers started publishing their content
such as news, series, and movies on their dedicated Web
sites or for this purpose used dedicated sharing services such
as YouTube, Hulu in the US, and many others.

In the above mentioned services, video streaming is
usually based on the HTTP and TCP, and the video player is
embedded in a web browser. TCP is currently the most
widely used transport protocol on the Internet but it is
commonly considered to be unsuitable for multimedia
streaming. The HTTP and TCP are general purpose
protocols and were not specifically designed or optimized
for streaming media delivery. Bandwidth is precious. When
we have a lot of people requesting the media over the
internet, there is a lot of bandwidth that travels across the
internet. These connections are uni-cast and they stream to
each individual person. If there are 500 people watching,
each person has to get a copy of that media. In this case,
bandwidth increases with the number of people. For 500
people we need 500 times the bandwidth. To tackle this

issue, companies like YouTube are dependent on CDNs.
Basically, they are fixing this issue by adding lot more of
computers and by moving the distribution centers nearer to
the mass users. To make matters more complicated, the
difference between yearly price drop in storage (40%) and
bandwidth (26%) is almost double. All this means that we
will have more people, streaming more data on channels that
are not scaling as fast. This creates congestion that at one
point in time cannot be solved by just adding more
hardware.

Imagine you are in a lecture together with 100 people
and you all watch the same video. What happens is that this
video has to be fetched from the closest nodes of Google,
streamed to each of the attendee’s laptops and repeated 100
times. Instead of students, who have an identical copy of the
video, sharing it with each other, we propagate large
amounts of data, long distances, multiple times. Inefficient,
but this is how HTTP works and it is creating large
congestion problems on the backbone of the Internet.

The internet is not 100% centralized since no single
corporation owns the entire internet. But relatively few large
corporations are responsible for hosting essential elements
of what we consider the internet. This kind of system
naturally has a single point of failure. This point of failure
can be misused to disable access to the content for an entire
country. Also, these traditional streaming services are under
the authority of one or few big organizations. Quality of
service and censorship rules are decided by them and the
users need to follow that without any questions. Making it a
centralized system of power and authority. Current cloud
architectures are completely reliant on large storage
providers such as Google, Amazon or Microsoft acting as
trusted third parties that store and transfer data. Encryption
is not widely adopted and the current architecture is
susceptible to many security vulnerabilities. Many storage
devices rely on the same infrastructure which is why failures
are often correlated across systems or files.

Decentralization can be defined as distributing power
away from a central authority or location. In a decentralized
storage network, the stored information is distributed across
decentralized clients, and each client node encrypts the data
to ensure data security and data integrity is maintained using
a proof of retrievability. Putting data on an open peer to peer
market drives down cost for storage devices. The data is also
resistant to unauthorized access, tampering, censorship and
data failures. A decentralized storage network has providers
of storage capacity that are economically rewarded from the
users renting storage using smart contracts. Decentralized
storage networks allow for micropayments where payments
are directly tied to audits of how the files have been stored.
This minimizes how much trust is needed between storage
providers and data owners. Decentralized networks cannot
be controlled by one authority figure or government, but
they are logically centralized as in there is one commonly
agreed state and the entire system behaves like one
supercomputer.

IV. PROPOSED SOLUTION

Our system uses the following components of modern
tech to build a safe and efficient method for media streaming
over the internet.

A. InterPlanetary File System (IPFS)
IPFS or InterPlanetary File System is an open-source

protocol and network designed to create a
content-addressable, peer-to-peer method of storing and
sharing hypermedia in a distributed file system. It aims to
make the web faster, safer, and more open. IPFS works by
connecting all devices on the network to the same file
structure. This file structure is a Merkle DAG, which
combines Merkle trees, and Directed Acyclic Graphs (used
in Git version control, which also allows users to see the
versions of content on IPFS).

This is the process of adding and retrieving files from
IPFS.

1) Each file and all of the blocks within it are given a
unique fingerprint called a cryptographic hash.

2) IPFS removes duplicates across the network.
3) Each network node stores only content it is

interested in, and some indexing information that
helps figure out who is storing what.

4) When looking up files, you're asking the network to
find nodes storing the content behind a unique
hash.

5) Every file can be found by human-readable names
using a decentralized naming system called IPNS.

HTTP is inefficient and expensive. HTTP downloads a
file from a single computer at a time, instead of getting
pieces from multiple computers simultaneously. With video
delivery, a P2P approach could save 60% in bandwidth
costs. IPFS makes it possible to distribute high volumes of
data with high efficiency. And zero duplication means
savings in storage. IPFS keeps every version of your files
and makes it simple to set up resilient networks for
mirroring of data. The webs centralization limits the
opportunity. IPFS aims to replace HTTP. IPFS is becoming
a new major subsystem of the internet. If built right, it could
complement or replace HTTP. In IPFS streaming we don't
need to push the content to every user. All you have to do is,
push the content to the IPFS gateways. Anyone who wants
that content can pick it up from there. IPFS gateway caches
the content locally. So a number of gateways, more content
sources. Each file and all of the blocks within it are given a
unique fingerprint called a cryptographic hash. IPFS
removes duplication across the network. Each network node
stores only content it is interested in, and some indexing
information that helps figure out who is storing what. Each
network node stores only content it is interested in, and
some indexing information that helps figure out who is
storing what. When looking up files, you’re asking the
network to find nodes storing the content behind a unique
hash.

IPFS provides persistence storage of those live streamed
media content so that if someone misses the live streaming,
they can always come back to find a saved copy of it. The
network automatically deletes duplicates and tracks version

history. With our interface we also allow users to schedule
the content for live streaming and broadcasting. Users can
record the media and automate the system to stream that
media on the given time for the specified duration. IPFS
helps to resolve congestion and overly controlling
governments by distribution. Instead of locations, IPFS
addresses point directly to the resources and it makes sure
that this data comes from the closest sources. This means
that if a classroom full of students would watch the same
video, they would fetch it from each other instead of any
central location. This would make streaming a 4k video
bufferless.

Another advantage of IPFS is that the user can download
parts of a file from various sources at once and combine it at
their side rather than downloading the whole file from a
single source.

B. HTTP Live Streaming (HLS)
Streaming performance over IPFS can be increased by

optimizing and compressing the video in right formats. HLS
or HTTP Live Streaming is a video streaming format first
introduced by Apple. It breaks streams into small file-based
segments which are widely supported format for viewing
streams in almost real time. HLS is designed for reliability
and dynamically adapts to network conditions by optimizing
playback. HLS can be easily integrated with HTML 5. HLS
is quickly making its way up the technology ladder, thanks
to its superior features and versatility. HLS divides the
video chunk into fragments of equal length, kept as .ts files.
It also creates an index file that contains references of the
fragmented files, saved as .M3U8.
When an HLS video stream is initiated, the first file to
download is the manifest. This file has the extension M3U8

and provides the video player with information about the
various bit rates available for streaming.

C. How IPFS Helps in Streaming
There are 2 parts to this system, one who publishes the

data and one who subscribes. We are calling the publisher
section as “medeia_publisher” and subscriber as
“media_subscriber”. The architecture below describes how
each component works and communicates with each other.

1) Getting the Content
a) WebRTC provides web browsers and mobile

applications with real-time communication via
simple application programming interfaces.

b) With WebRTC we transfer the webcam
content to node server as WebM with VP9
codec every 10 seconds.

2) Transferring this data to Server
a) From Publisher, we send this WebM data over

Socket.io to our server
b) We create different room/folder for each

session with the ID of Publisher.
c) While doing this, Publishers can select the

target node they want to save this data. Either
they can store the chunks on their local
gateway or on the cloud-based gateway.

3) Converting to HLS
a) Once we receive the content chunk at server

side, using FFMPEG we convert that chunk
into HLS format.

b) It creates an m3u8 file and ts files. We add
these files into a folder specifically dedicated
to this chunk inside the folder dedicated for
this session of the live stream.

4) Adding the files to IPFS

a) We add the newly created chunk folder to
IPFS.

b) In this way, we only add a small chunk of data
to IPFS every 10 seconds and send this hash of
it to subscribed viewers

5) Sending this data to subscribers
a) Subscribers receive the hash for chunk as soon

as it is added to the IPFS
b) This transfer of chunk happens over Socket.io
c) Each session has a different socket session and

this hash is shared over that session.
6) Play it on the Subscriber Side

a) As we get the hash on the subscriber side,
HLS.js picks hash from the queue and starts
playing it.

b) HLS.js is connected to IPFS and gets the data
for the given hash directly.

7) The stored version of the live session
a) Once the live session is over, the publisher has

the ability to add the recorded version of this
live session to IPFS and share its hash over the
socket.

b) This will have the entire session recorded
during the live session.

8) Pin the content locally
a) We provide a separate server and client-side

API (discussed in more detail in I) to pin the
media content locally to the local IPFS node of
the user for faster and efficient access.

b) We are able to remove files from the main
server that is already being hosted by a large
number of clients. Hence, the storage is not
wasted.

c) This also leads to decentralization of the entire
system.

This is one cycle of chunk recording, conversion to HLS,
adding to IPFS, transfer to the subscriber and playing it on
HLS.js. This operation happens continuously for various
concurrent live streams.

D. FFMPEG
We are using FFMPEG to convert the incoming

chunks into HLS. FFMPEG is a free and open-source utility
for converting, recording, splicing, editing, playing,
encoding, muxing, demuxing, and streaming multimedia
files. It can work with audio, images, and video in basically
any codec or format used in the past 20 years. With
FFMPEG, we can convert between different file formats and
codecs, adjust bitrate (both audio and video) and broadcast a

live stream video feed. It can effortlessly parse a file to any
format, convert it to a different format and even transmit it
through a network via any protocol. Storing incoming chunk
on SSD will further improve the performance and
conversion time.

E. Smart Contract
1) Authentication

With the increasing threat to the data leak in
the current architecture. Data reliability is 0%. As
anyone can manipulate personal data and steal or
pretend to be that person.

a) With the help of blockchain, we can
authenticate whether user claims to be is the
same person or not.

b) Manipulating the data or reviewing someone
else data, is next to impossible. As the only
user has access to those personal data.

c) As mentioned above, it becomes easy to
authenticate the ownership of the streaming
data. And it cannot be changed at any given
point in the system

d) This authenticity is achieved, in the system
with the help of blockchain. As two address
cannot be the same in the system. These nature
of the blockchain provide the authenticity of
the streaming data in IPFS.

2) Authorization
a) After the streaming gets complete over the

blockchain, a file hash is generated and stored
in the blockchain mapped with the publisher
address. As this process will help the users to
authorize and authenticate the use of the
streaming data by other users.

b) Streamer can put the validation as to who can
view or download the data. This process puts
the extra layer of security on the data streamed
over the IPFS network.

c) Three types of function generator paid
streaming, private streaming, and public
streaming. All the functionality have a
different way of working. Please find the brief
details of the same below:
i) Paid Streaming: User will have to pay

tokens to watch the streaming
ii) Private Streaming: User will invite the

other users or a group
iii) Public Streaming: Every user can view

the streaming without spending tokens

d) As mentioned above, it becomes easy to
authenticate the ownership of the streaming.
And it can not be changed by anyone. This
authenticity is achieved, as no two address can
be the same in the system.

3) Accessibility

a) Being the nature of decentralization,
Blockchain offers a wide range of accessibility
to the data.

b) The publisher can set the access level to the
data added in the IPFS node, knowing the level
and importance of the data.

c) As blockchain is easily accessible by
connecting the node. With the inclusion of
IPFS, it becomes very easy to access the data
even without internet.

d) Whenever system, is connected to internet and
node gets sync with the network, Data’s that
are accessible can be view at any given point
of time.

e) After adding the accessible level, the publisher
can also validate whether the same person has
accessed the data or not.

4) Security
a) Data leak, data hack, duplication, and many

other threat levels which today’s generation
facing, the integrity of data is lost.

b) Security to the data added in any web
application can be stolen at any given point
making it vulnerable.

c) Blockchain uses many different algorithms to
create the hash. And all the data is stored in the
hash. It is practically impossible to crack the
hash.

d) Once the transaction is done in the blockchain,
and validators, validate the data. It becomes
next to impossible to break the security.
Making data very secure and reliable.

e) The source of the data is always known and it
helps to track the authenticity of the data. Fake
data or spam data can be blocked at any given
time if the regulation is followed.

f) Connecting the IPFS node to blockchain
makes it very secure, as no one can steal the
data. The only authorized person can view or
edit the data.

5) Token Transaction
a) Uploading data into IPFS or streaming data

using IPFS can be used to generate the revenue
for both publisher or viewer

b) The publisher can set the particular token
amount to view or subscribe to the data.
Making it easy to earn medium

c) Transaction of token takes very less amount of
time as blockchain uses the concept of
remittance free world.

F. Use Cases
1) Protected one to one private live video chat
2) Secure live stream broadcasts

3) Secure and controlled Chat Rooms
4) Decentralized Television Network
5) Decentralized subscription based on-demand video
6) The decentralized and secure surveillance system

G. Scalability & Reliability
Above proposed solution is scalable due to the nature of
IPFS and private POA blockchain that is being used.
Having private blockchain in place gives us easy access
to scale our this platform up to 120 transactions per
second.

The native web application that gives access to the
platform could be highly distributed and decentralized
by enabling it to be part of IPFS itself.
A lightweight application can sit on the client side to
serve dynamic content as well. This enables us to scale
and support an increasing number of concurrent live
streams.

Having Distributed Ledger Technologies and IPFS along
with lightweight client-side application installed by the
user can benefit in terms of performance and reliability
as well.

H. Security
May it be peer to peer stream or broadcast, it is highly
secure and streamer only can control who can have
access to their stream(s). Each live stream sessions are
recorded on blockchain using unique session token and
is controlled by specialized smart contract and it holds
all necessary metadata to identify and associate the
stream with streamer and viewers.

Streamer can allow specific viewers/wallet address on
blockchain and authorize them to view the stream while
viewers with valid wallet & private key can only
subscribe to the stream and have access to the stream.
This approach is highly secure & reliable harnessing the
power of decentralization.

This gives tremendous flexibility to control the
accessibility of data or stream allowing streamer to be
the only identity-defining, managing and maintaining the
authorization and security. Only the owner of data can
define and control the security parameters associated
with their stream, which is way more practical, reliable
and secure compared to other means of centralized data
delivery.

I. Proposal to decentralize Cloud Storage System
We create a cloud server which stores pictures, audios,
videos, and documents. Each of these files is added to
IPFS and are assigned a unique hash value. The user has
the option to pin any of these files. JSON arrays are
maintained unique to each user which contain the hashes
of the file pinned by each user, i.e., whenever a user pins
a file, its hash value is added to the respective user’s
JSON array. A desktop application is running on the
machines of each user, which checks the JSON array of
the user at regular intervals and pins the file hashes to
the local IPFS node of the user. When more than a
certain number of clients pin the same file to their local
node, it is removed from the cloud-based IPFS node,
making its primary use as an IPFS Gateway.

A. DESKTOP APPLICATION

This is in the form of a web app running locally on the
user's machine. The pre-requirement of the application is
that ipfs.exe should be preinstalled on the client's
computer. This application dynamically pins files that
the client wants to host from a server cloud to the local
IPFS node of the client. The server-less cloud maintains
a list of the file hashes that a client wants to host in the
form of a JSON string which is updated regularly. The
desktop application checks the JSON string at regular
intervals and pins files to the local IPFS node of the
client. The desktop application also has features where

the user can start the IPFS daemon, check if the daemon
is running or not and manually pin files to the local IPFS
node.
Incentive Model: The users who pin the content locally
on their computers are rewarded the token based on
certain factors as the duration of storage (i.e. pinning of
the hash), size of storage, bandwidth etc. This helps
strengthen the IPFS network and allows the users to get
an incentive for renting out their hard disk drive.
This model is similar to Filecoin except the fact that the
platform decides which users would store specific files
and issue tokens periodically.

B. WEB APPLICATION

A lightweight, interactive and secure web application
will be used to provide native functionality of
authorizing users. A new user can create their account to
use IPFS streaming services. They can monitor the stats
of IPFS network. Create API key to communicate
between a client application and streaming server. Over
web application, a user can also check documentation
and guides to effectively use IPFS streaming technology.

C. API SERVER

It primarily performs two major functions. It creates a
blockchain wallet for a user taking username and
password as the input. A public-private key pair is
created for every username. The public key is returned to
the user and the private key is encrypted with the entered
password and stored. It is also responsible for adding
files to IPFS and pinning them to the server IPFS node.
The files are categorized into images, audios, videos, and
documents. The API also maintains a record using JSON
arrays (for every user) that contains the files hashes
pinned by each individual user. A file is unpinned from
the server IPFS node in case it is pinned by six or more
users to their local systems. It basically is a lightweight,
interactive and secure web application that will be used
to provide functionality to the users.

REFERENCES

[1] Gregory J. Conklin, Gary S. Greenbaum, Karl O. Lillevold, Alan F.

Lippman, Yuriy A. Reznik, “Video Coding for Streaming Media
Delivery on the Internet”, IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3,
MARCH 2001

[2] Hareesh.K, Manjaiah D.H, “PEER-TO-PEER LIVE STREAMING
AND VIDEO ON DEMAND DESIGN ISSUES AND ITS
CHALLENGES”, International Journal of Peer to Peer Networks
(IJP2P) Vol.2, No.4, October 2011

[3] Tomas Kupka, “On the HTTP segment streaming potentials and
performance improvements.”, Faculty of Mathematics and Natural
Sciences at the University of Oslo, February 2013

[4] Biernacki, A. & Tutschku, K. Multimed Tools Appl (2014) 72: 1143.
https://doi.org/10.1007/s11042-013-1424-x

[5] Amber Case, “Why The Internet Needs IPFS Before It’s Too Late”,
TechCrunch Article, October 2015

[6] Rohith Gandhi, “InterPlanetary File System(IPFS) — Future of the
Web”, CoinMonk, Medium Article, May 2017

[7] Prasenjit Chakraborty, Sachin Dev, Rajaram Hanumantacharya
Naganur, “Dynamic HTTP Live Streaming Method for Live Feeds”,
978-1-5090-0076-0/15, DOI 10.1109/CICN.2015.333© 2015 IEEE,
pp.1394-1398

[8] R. Pantos, W. May and Apple Inc. Internet draft -
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

[9] Smita R Gupta, Krunal Panchal, “MODELING REAL-TIME
MULTIMEDIA STREAMING USING HLS PROTOCOL”,
IJARIIE-ISSN(O)-2395-4396, Vol-2 Issue-6 2016

[10] Yang Can, Li Yongyan, “A New Mobile Streaming System Base-on
Http Live Streaming Protocol”, 978-1- 4244-6252-0/11©2011 IEEE

[11] Ankit Songara1 and Lokesh Chouhan, ``Blockchain: A Decentralized
Technique for Securing Internet of Things'' in International
Conference on Emerging Trends in Engineering Innovations \&
Technology Management (ICET: EITM-2017).

[12] Marcella Atzori, ‘Blockchain Technology and Decentralized
Governance: Is the state still necessary?’ in Journal of Governance
Regulation/ Volume 6, issue, 1 2017

[13] Protocol Labs, ‘Filecoin: A Decentralized Storage Network’, July 19,
2017

[14] Juan Benet, David Dalrymple, Nicola Greco, ‘Proof of Replication’,
Protocol Labs, July 27, 2017

https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

